Affiliation:
1. College of Pharmacy University of Al-Ameed Karbala Iraq
2. Department of Chemistry Faculty of Science University of Kufa Najaf Iraq
3. College of Engineering University of Warith AL-Anbiyaa Karbala Iraq
4. College of Pharmacy University of Babylon 51002 Hillah, Babylon Iraq
5. College of Pharmacy The Islamic University Najaf 54001 Iraq
Abstract
AbstractExchange‐coupled spin states of cobalt complexes represent the key to understanding the challenging nature of the magnetism of cobalt dimer. In this study, we introduce a comprehensive investigation of the nature of magnetic super‐exchange coupling interactions between two metallic centers in a macro ligand cobalt dimer. More importantly, we provide a detailed comparison between a series of bridging ligands and study their role in the magnetic exchange coupling constant in cobalt dimer with tetraaza macrocycle ligand scaffold. By varying the types of bridging and terminal ligands, we explored the nature of magnetic coupling in 24 species of cobalt dimers, which allowed us to draw a magneto‐structure relationship and monitor the effect of bridging/terminal ligands on the overall magnetism. We employed different density functional theory (DFT) methodologies and complete active space self‐consistent field (CASSCF) in our investigation. The results show that there are comprehensible functional dependencies, and the choice of exchange‐correlation functional is critical for calculating the magnetic properties. Using the experimental values of the exchange coupling, we found that hybrid functionals with 10–20 % Hartree‐Fock exchange integrals give acceptable accuracy. Furthermore, we adjusted the percentage of HF integrals to estimate the optimum value required to be included in the hybrid functionals. Finally, we used CASSCF to gain deeper understanding of the magnetic coupling for the valence magnetic electrons and to achieve the true ground state wavefunction, which is not feasible with conventional DFT calculations. However, the CASSCF calculations poorly underestimate the magnetic coupling, which can be significantly improved by including the dynamic correlations, as implemented in the NEVPT2 methodology.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Antiferromagnetic Chromium-Doped Tin Clusters;The Journal of Physical Chemistry A;2024-04-03