Effect of ionizing dose rate on the radioresistance of some food pathogenic bacteria

Author:

Dion Paule,Charbonneau Raymond,Thibault Chantal

Abstract

Food pathogenic bacteria including Listeria monocytogenes (1A1 and ATCC 19111), Staphylococcus aureus (GD13 and ATCC 13565), Escherichia coli 0157:H7 (ATCC 35150), Salmonella typhimurium, Yersinia enterocolitica, Vibrio parahaemolyticus, and Campylobacter jejuni were exposed to various rates of ionizing radiation (0.78, 2.6, and 22 kGy/h) emitted by three different 60Co irradiators. D10 values (D10 is the radiation dose required to eliminate 90% of a bacterial population (one logarithmic cycle reduction)) were calculated for the various strains and growth conditions tested. A covariance analysis of these results revealed that the dose rates studied had no significant influence on the radiosensitivity of these bacteria. At all dose rates, the bacteria were more radiosensitive when irradiated in a saline solution (0.85% NaCl) than in a chicken breast meat suspension. The growth phase of the bacterial population had a variable influence on its radioresistance. For L. monocytogenes 1A1, Staphylococcus aureus ATCC 13565, E. coli 0157:H7, Y. enterocolitica, and V. parahaemolyticus, radioresistance was not significantly different in the exponential and stationary phases. Populations of L. monocytogenes ATCC 19111 and Staphylococcus aureus GD13 were significantly more resistant in the stationary phase (D10 = 0.23 and 0.12 kGy, respectively) than in the exponential phase (D10 = 0.17 and 0.09 kGy, respectively). Among the pathogenic bacteria investigated in this study, the most radioresistant was L. monocytogenes (D10 = 0.16–0.38 kGy, Gram-positive bacilli) and the most radiosensitive was V. parahaemolyticus (D10 = 0.03–0.04 kGy, halophilic Gram-negative bacilli).Key words: ionization, food pathogenic bacteria, dose rate effect, radioresistance.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3