HIGH ENERGY REACTIONS OF ATOMIC HYDROGEN

Author:

Henchman Michael,Urch David,Wolfgang Richard

Abstract

The chemistry of hot hydrogen atoms has been studied using tritium of high kinetic energy as produced by nuclear recoil. The possibilities and limitations of this technique are discussed using a collision theory for reactions of atoms having a very high initial energy. Using this theory and certain experimental data, it is concluded that hot hydrogen atoms react to combine with organic molecules at very high collision efficiency (of the order of approximately 0.2 to 0.4) in the energy range 3–10 ev. There is no indication that collisions at much higher energies lead to combination. With most systems, e.g. alkanes, a wide variety of reactions is observed. The systematics of these hot reactions is discussed and evidence on their detailed mechanism is presented. It appears that most products are formed by a fast displacement of an atom or group by the hot hydrogen. There is no evidence for the formation of a common, internally equilibrated, collision complex which decays on a statistically determined basis to the various products. Instead, the course of the reactions seems largely governed by the direction and point of impact of the hot atom. Thus, stereochemical evidence indicates that axial approach of the hot hydrogen atom along the C—H bond axis leads to abstraction while approach at large angles to this axis results in displacement without Walden inversion. In some cases sufficient excitation energy is introduced in the hot displacement process to cause further decomposition of the primary product. This model of high-energy reactions is compared with that of thermal reactions and its general implications are briefly discussed.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3