Development of droplet digital PCR assays to quantify genes involved in nitrification and denitrification, comparison with quantitative real-time PCR and validation of assays in vineyard soil

Author:

Voegel Tanja M.11,Larrabee Melissa M.11,Nelson Louise M.11

Affiliation:

1. Irving K. Barber Faculty of Science, Department of Biology, University of British Columbia Okanagan, 1177 Research Road, Kelowna, BC V1V 1V7, Canada.

Abstract

Quantifying genes in soil is important to relate the abundance of soil bacteria to biogeochemical cycles. Quantitative real-time PCR is widely used for quantification, but its use with environmental samples is limited by poor reaction efficiencies or by PCR inhibition through co-purified soil substances. Droplet digital PCR (ddPCR) is a technology for absolute, sensitive quantification of genes. This study optimized eight ddPCR assays to quantify total bacteria and archaea as well as the nitrification (bacterial and archaeal amoA) and denitrification (nirS, nirK, nosZI, nosZII) genes involved in the generation or reduction of the greenhouse gas nitrous oxide. Detection and quantification thresholds were compared with those of quantitative real-time PCR and were equal to, or improved, in ddPCR. To validate the assays using environmental samples, soil DNA was isolated from two vineyards in the Okanagan valley in British Columbia, Canada, over the 2017 growing season. Soil properties related to the observed gene abundances were determined. Total bacteria, nirK, and nosZII increased with time and the soil C/N ratio and NH4+-N concentration affected total archaea and archaeal amoA negatively. The results, compared with those of other studies, showed that ddPCR is a valid alternative to qPCR to quantify genes involved in nitrification or denitrification.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3