Crop, genotype, and field environmental conditions shape bacterial and fungal seed epiphytic microbiomes

Author:

Morales Moreira Zayda P.1,Helgason Bobbi L.2,Germida James J.2

Affiliation:

1. Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.

2. Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada.

Abstract

Seeds are reproductive structures able to carry and transfer microorganisms that play an important role in plant fitness. Genetic and external factors are reported to be partly responsible for the plant microbiome assemblage, but their contribution in seeds is poorly understood. In this study, wheat, canola, and lentil seeds were analyzed to characterize diversity, structure, and persistence of seed-associated microbial communities. Five lines and 2 generations of each crop were subjected to high-throughput amplicon sequencing of the 16S rRNA and internal transcribed spacer (ITS) regions. Bacterial and fungal communities differed most by crop type (30% and 47% of the variance), while generation explained an additional 10% and 15% of the variance. The offspring (i.e., generation harvested in 2016 at the same location) exhibited a higher number of common amplicon sequence variants (ASVs) and less variability in microbial composition. Additionally, in every sample analyzed, a “core microbiome” was detected consisting of 5 bacterial and 12 fungal ASVs. Our results suggest that crop, genotype, and field environmental conditions contributed to the seed-associated microbial assemblage. These findings not only expand our understanding of the factors influencing the seed microbiome but may also help us to manipulate and exploit the microbiota naturally carried by seeds.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3