Homodimerization and heterodimerization requirements of Acinetobacter baumannii SOS response coregulators UmuDAb and DdrR revealed by two-hybrid analyses

Author:

Cook Deborah1,Carrington Jordan1,Johnson Kevin12,Hare Janelle1

Affiliation:

1. Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA.

2. Craft Academy for Excellence in Science and Mathematics, Morehead State University, Morehead, KY 40351, USA.

Abstract

The multidrug-resistant pathogen Acinetobacter baumannii displays unusual control of its SOS mutagenesis genes, as it does not encode a LexA repressor, but instead employs the UmuDAb repressor and a small protein, DdrR, that is uniquely found in Acinetobacter species. We used bacterial adenylate cyclase two-hybrid analyses to determine if UmuDAb and DdrR coregulation might involve physical interactions. Neither quantitative nor qualitative assays showed UmuDAb interaction with DdrR. DdrR hybrid proteins, however, demonstrated modest head-to-tail interactions in a qualitative assay. The similarity of UmuDAb to the homodimer-forming polymerase manager UmuD and LexA repressor proteins suggested that it may form dimers, which we observed. UmuDAb homodimerization required a free C terminus, and either small truncations or addition of a histidine tag at the C terminus abolished this homodimerization. The amino acid N100, crucial for UmuD dimer formation, was dispensable if both C termini were free to interact. However, mutation of the amino acid G124, necessary for LexA dimerization, yielded significantly less UmuDAb dimerization, even if both C termini were free. This suggests that UmuDAb forms dimers like LexA does, but may not coregulate gene expression involving a physical association with DdrR. The homodimerization of these coregulators provides insight into a LexA-independent, coregulatory process of controlling a conserved bacterial action such as the mutagenic DNA damage response.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3