Thermochemistry of icosahedral closo-dicarboranes: a composite ab initio quantum-chemical perspective

Author:

Sarrami Farzaneh11,Yu Li-Juan11,Karton Amir11

Affiliation:

1. School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia.

Abstract

We obtained accurate thermochemical properties for the ortho-, meta-, and para-dicarborane isomers (C2B10H12) by means of explicitly correlated high-level thermochemical procedures. The thermochemical properties include heats of formation, isomerization energies, C–H and B–H bond dissociation energies (BDEs), and ionization potentials. Of these only the ionization potentials are known experimentally. Our best theoretical ionization potentials, obtained by means of the ab initio W1–F12 thermochemical protocol, was 241.50 kcal mol–1 (para-dicarborane), 238.45 kcal mol–1 (meta-dicarborane), and 236.54 kcal mol–1 (ortho-dicarborane). These values agree with the experimental values adopted by the National Institute of Standards and Technology (NIST) thermochemical tables to within overlapping uncertainties. However, they suggest that the experimental values may represent significant underestimations. For all isomers, the C–H BDEs are systematically higher than the B–H BDEs because of the relative stability of the boron-centred radicals. The C–H BDEs for the three isomers cluster within a narrow energetic interval, namely between 110.8 kcal mol–1 (para-dicarborane) and 111.7 kcal mol–1 (meta-dicarborane). The B–H BDEs cluster within a larger interval ranging between 105.8 and 108.1 kcal mol–1 (both obtained for ortho-dicarborane). We used our benchmark W1–F12 data to assess the performance of a number of lower cost composite ab initio methods. We found that the Gaussian-3 procedures (G3(MP2)B3 and G3B3) result in excellent performance with overall root-mean-square deviations (RMSDs) of 0.3–0.4 kcal mol–1 for the isomerization, ionization, and bond dissociation energies. However, the Gaussian-4 procedures (G4, G4(MP2), and G4(MP2)-6X) showed relatively poor performance with overall RMSDs of 1.3–3.7 kcal mol–1.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3