Thermodynamic properties of formation estimated to biodiesel esters using Gaussian quantum chemistry software and group contribution method of Constantinou and Gani

Author:

Potrich E.1,Voll F.A.P.2,Cabral V.F.3,Filho Cardozo4

Affiliation:

1. Federal University of São Carlos, Chemical Engineering Graduate Program, São Carlos, Brazil

2. Federal University of Paraná, Chemical Engineering Department, Curitiba, Brazil.

3. State University of Maringá, Food Engineering Department, Maringá, Brazil

4. State University of Maringá, Chemical Engineering Department, Maringá, Brazil + Centro Universitário Octávio Bastos, Agronomy Department, São João da Boa Vista, Brazil

Abstract

A lot of recent research has focused on the study of biocatalysts and nanocatalysts to improve biodiesel production. However, knowledge of the thermodynamic properties of the reaction components is necessary. In this work, the enthalpy of formation and Gibbs free energy of formation for methyl to pentyl esters were calculated using the Gaussian quantum chemistry software (model B3LYP/6-31G(d, p)) and the group contribution method of Constantinou and Gani (MCG). The values obtained by both methodologies present certain differences in relation to the values in the literature. Thus, three correction parameters, which were based on the number of atoms of 26 different molecules, were estimated by minimizing the error function and later used to extrapolate the results to larger molecules of interest. After the use of the correction parameters, the mean deviation between the experimental and calculated values by Gaussian was 0.723% for enthalpy and 1.087% for Gibbs, whereas for MCG, it was 1.324 and 2.540%, respectively. As the methodology proved to be efficient, the thermodynamic properties of the formation of 23 esters that compose the biodiesel were estimated. These properties are of great importance, mainly for the calculation of chemical equilibrium and reaction data in the development of new catalysts.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3