Microhabitat separation during winter among sympatric giant pandas, red pandas, and tufted deer: the effects of diet, body size, and energy metabolism

Author:

Zhang Zejun,Wei Fuwen,Li Ming,Zhang Baowei,Liu Xuehua,Hu Jinchu

Abstract

The giant panda (Ailuropoda melanoleuca (David, 1869)), red panda (Ailurus fulgens F.G. Cuvier, 1825), and tufted deer (Elaphodus cephalophus Milne-Edwards, 1872) are endemic to the Himalayan Hengduan Mountains; the red panda extends into India, Burma, Bhutan, and Nepal, and the tufted deer extends marginally into Burma, while the giant panda is endemic to China. In Sichuan Province, uniquely, all three species occur sympatrically. We investigated microhabitat characteristics at 150 fecal-group sites from November 2002 to March 2003 to improve understanding of microhabitat separation among the three species at the Fengtongzhai Nature Reserve, Baoxing County, Sichuan Province, People's Republic of China. Density and height of bamboo were greater in the giant and red pandas' micro habitats than in those of the tufted deer. The red panda preferred microhabitats with greater tree-stump density, smaller trees, and shorter fallen log dispersion distance than the other two species. Tufted deer often occurred at sites with greater shrub density and herb cover and more open land with poorer concealment conditions than sites where the two panda species occurred. Both pandas' microhabitats were mostly concentrated on the upper hillside, unlike those of the tufted deer. The giant panda preferred microhabitats with a gentler slope and lower density of fallen logs. Selection of specific microhabitats by each species is an ecological adaptation dependent on behavior linked to its diet, body size, energy metabolism, and other factors. Microhabitat separation among these species reflects the integrated effects of their differences in diet, body size, and energy metabolism, which could facilitate their successful coexistence.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3