CHALKOGENIDES OF THE TRANSITION ELEMENTS: II. EXISTENCE OF THE π PHASE IN THE M9S8 SECTION OF THE SYSTEM Fe–Co–Ni–S

Author:

Knop Osvald,Ibrahim Mohammad Anwar

Abstract

The face-centered cubic phase π(Fe,Co,Ni,S) has been shown to exist, at room temperature, within wide composition limits in or close to the M9S8 section of the quaternary system Fe–Co–Ni–S. The M:S ratio of the binary phase π (Co,S) is 9:8 with very narrow homogeneity ranges on both sides of Co9S8, but in π (Fe,Co,Ni,S) the ratio is somewhat higher and appears to increase with decreasing cobalt content. Stoichiometric Co9S8 probably contains a small number of vacancies in both sublattices. It is quite lilcely that the sulphur sublattice is nearly fully occupied and that departures from stoichiometry are caused by the varying degree of occupancy of the metal sublattice.The crystal structure, which was proposed for Co9S8 and for the mineral pentlandite by Lindqvist etal., has been confirmed for these two substances and for π (Fe,Co,Ni,S) in general by X-ray and neutron powder diffraction. The present evidence does not support the crystal structure suggested for natural pentlandite by Eliseev; Eliseev's model does not, in fact, account for the diffraction data of any of the substances examined in this work.Replacement of cobalt in π (Co,S) by iron or nickel or both results in an expansion of the unit cell, the maximum increase in a(π) amounting to about 3%. Cobalt in π (Co,S) cannot be replaced completely by iron or by nickel in samples prepared by dry synthesis, but if the substitution is simultaneous, the π structure will be preserved over a considerable range of compositions even on total replacement. The stability limits of π (Fe,Ni,S) have been found somewhat wider than those stated by Lundqvist.In π phases with the compositions Co8MS8 the metal atoms can conceivably be present in ordered sublattices. This possibility was explored by neutron diffraction in slowly cooled Co8NiS8. Unlike in spinels, where nickel shows a strong preference for octahedral co-ordination, the cobalt and nickel atoms were found to be distributed at random.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3