Seismic reflection constraints on imbrication and underplating of the northern Cascadia convergent margin

Author:

Calvert A. J.1

Affiliation:

1. Département de génie minéral, École polytechnique, P.O. Box 6079, Station Centre-ville, Montréal, QC H3C 3A7, Canada

Abstract

An interpretation of the deep structure of the continental shelf offshore southern Vancouver Island, subject to constraints from other geophysical data, is derived by combining seismic reflection profiles shot in 1989 with those from an earlier 1985 survey. Accretionary wedge sediments, which extend landward beneath the volcanic Crescent terrane, comprise two primary units, both of which have shortened through duplex formation. The maximum thickness of the Crescent terrane, 6–8 km, occurs just seaward of its contact with the inboard, largely metasedimentary Pacific Rim terrane. The E region of reflectivity, first detected dipping landward beneath Vancouver Island, is regionally extensive, being observed on all the seismic profiles. The E reflectivity thins seaward and splits into two or more strands that probably link into major faults within the accreted sedimentary wedge. Reflections from the interplate décollement beneath the outer continental shelf separate from the downgoing plate, continue into the deepest level of the E reflectivity, and are interpreted to represent a single décollement surface above which imbrication of accreted units occurred. It is proposed that at the southern end of Vancouver Island the E reflections represent mainly underthrust sediments above a former subduction décollement, both of which were incorporated into the overlying continent when the subduction thrust stepped down into the descending oceanic plate. This change in depth of the subduction thrust underplated one or more mafic units to the continent. The reflection from the top of the subducting Juan de Fuca plate appears to be around 5 km shallower farther north along the margin, indicating that the underplated region could be confined to the embayment in the Cascadia subduction zone.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3