A Cascadia Slab Model From Receiver Functions

Author:

Bloch Wasja1ORCID,Bostock Michael G.1ORCID,Audet Pascal2ORCID

Affiliation:

1. The University of British Columbia Vancouver BC Canada

2. University of Ottawa Ottawa ON Canada

Abstract

AbstractWe map the characteristic signature of the subducting Juan de Fuca and Gorda plates along the entire Cascadia forearc from northern Vancouver Island, Canada, to Cape Mendocino in northern California, USA, using teleseismic receiver functions. The subducting oceanic crustal complex, possibly including subcreted material, is parameterized by three horizons capable of generating mode‐converted waves: a negative velocity contrast at the top of a low velocity zone underlain by two horizons representing positive contrasts. The amplitude of the conversions varies likely due to differences in composition and/or fluid content. We analyzed the slab signature for 298 long‐running land seismic stations, estimated the depth of the three interfaces through inverse modeling and fitted regularized spline surfaces through the station control points to construct a margin‐wide, double‐layered slab model. Crystalline terranes that act as the static backstop appear to form the major structural barrier that controls the slab morphology. Where the backstop recedes landward beneath the Olympic Peninsula and Cape Mendocino, the slab subducts sub‐horizontally, while the seaward‐protruding and thickened Siletz terrane beneath central Oregon causes steepening of the slab. A tight bend in slab morphology south of the Olympic Peninsula coincides with the location of recurring large intermediate depth earthquakes. The top‐to‐Moho thickness of the slab generally exceeds the thickness of the oceanic crust by 2–12 km, suggesting thickening of the slab or underplating of slab material to the overriding North American plate.

Funder

Deutsche Forschungsgemeinschaft

RES’EAU-WaterNET

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3