A novel ultrashort capillary gas chromatography method using on-column injection and detection

Author:

Alkhateeb Fadi L.11,Hayward Taylor C.11,Thurbide Kevin B.11

Affiliation:

1. Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada.

Abstract

A novel method for ultrashort capillary column gas chromatography (GC) analysis is introduced, which employs on-column injection and detection and rapid temperature programming. Using 10–20 cm long capillary columns, results showed that the method provides efficient and very rapid separations for relatively simple mixtures. Moreover, the on-column aspect of the method used here is demonstrated to avoid the extra column analyte degradation that can occur in traditional approaches to such separations. As a result, the developed method allows for the first time the GC analysis of some very large and (or) highly thermally labile analytes, such as polypeptides and drug molecules that are normally prone to decomposition. As an application, this method is further used to monitor pharmaceutical degradant formation as a function of temperature and was found to provide similar results to those obtained from conventional high-performance liquid chromatography analysis. Overall, the findings indicate that this ultrashort GC column approach could be useful in these areas and potentially others, where relatively simple GC analysis and universal flame ionization detection is desirable.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3