Affiliation:
1. Shaanxi Key Laboratory of Phytochemistry, College of Chemistry, Baoji University of Arts and Sciences, Baoji, 721013 Shaanxi, P.R. China.
2. Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070 Gansu, P.R. China.
Abstract
To seek high-performance oligomer donor materials used in organic solar cells, four star-shaped molecules with a planar donor core derived from the recent reported molecule 3T-P-DPP (phenyl-1,3,5-trithienyl-diketopyrrolopyrrole) were designed. The molecular properties affecting the cell performance, such as structural characteristics, frontier molecular orbital energy level, absorption spectra, exciton character, and charge transfer/transport, were investigated by means of the density functional theory and time-dependent density functional theory methods. Comparative analysis showed that the new designed molecule 3 with a TTT (2,4,6-tri(thiophen-2-yl)-1,3,5-triazine) core has better planarity, a lower HOMO energy level, and a higher absorption efficiency, as well as more favorable exciton dissociation and charge transfer than the others, potentially improving the open-circuit voltage and short-circuit current density. Consequently, 3 maybe superior to 3T-P-DPP and may act as a promising donor material candidate for organic solar cells.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献