Forest-floor chemical properties are altered by clear-cutting in boreal mixedwood forest stands dominated by trembling aspen and white spruce

Author:

Hannam K D,Quideau S A,Kishchuk B E,Oh S -W,Wasylishen R E

Abstract

Alterations in the chemical properties of the forest floor following clear-cut harvesting may have implications for forest productivity in boreal stands. We used proximate analysis, carbon-13 (13C) isotopic determination, and cross-polarization, magic-angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy to examine differences in the characteristics of the forest floors from uncut stands and clear-cut stands dominated by white spruce (Picea glauca (Moench) Voss; SPRUCE) and trembling aspen (Populus tremuloides Michx.; ASPEN) in northern Alberta. Proximate analysis revealed no difference in the chemical properties of forest floors from clear-cut and uncut stands in either stand type, but the acid-insoluble residue of forest floors from clear-cut ASPEN stands was enriched in 13C compared with those from uncut ASPEN stands. CPMAS 13C NMR spectroscopy revealed that forest floors from clearcuts were enriched in total aromatic C, particularly in ASPEN stands, and depleted in phenolic C, particularly in SPRUCE stands. These patterns indicate that forest floors from the clearcuts have become more humified, which may reflect stand-type differences in the amount of labile C available to the forest-floor microbial community and reductions in above- and below-ground inputs to the forest floor following clear-cutting in both stand types. Changes in the chemical properties of forest floors from clear-cut SPRUCE and ASPEN stands could exacerbate C limitation in these soils and alter patterns of nutrient cycling.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3