Isotope applications to soil science at the University of Alberta — an historical perspective

Author:

Feland Brett C.12,Quideau Sylvie A.12

Affiliation:

1. Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada

2. Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada.

Abstract

For the past 70 yr, researchers in the Soil Science/Renewable Resources Department at the University of Alberta have used isotopes to study topics of ecological importance. This review highlights the soil isotope research conducted within our department over this time, including an historical overview of studies of interest. Analytical techniques and advances in instrumentation are discussed, focusing on the measurement of light stable isotope ratios (i.e., for C, H, N, S, and O) using isotope ratio mass spectrometry (IRMS). Early soil isotope work (1950–2000s) focused on agricultural soils and soil fertility issues. These studies included the use of radioactive isotopes such as 14C and 35S, and (or) artificially enriched stable isotopes including 15N-labelled fertilizers. More recently (2000–present), the scope of research widened to include natural-abundance stable isotope ratio studies as higher-sensitivity IRMS systems became more prevalent. Current isotope research topics include N biogeochemistry in natural and managed ecosystems, land management effects on greenhouse gas emissions, carbon cycling in northern landscapes, paleo-reconstruction in peatlands, carbon sequestration in boreal forests, and biodegradation of petroleum hydrocarbons. Further technological progress also enabled new techniques such as compound-specific IRMS analysis, including δ13C and δ2H measurements of soil n-alkanes and phospholipid fatty acids. In conclusion, current IRMS instrumentation presents unparalleled opportunities for multidisciplinary research to track carbon, plant nutrients, and pollutants as they move through soils.

Publisher

Canadian Science Publishing

Subject

Soil Science

Reference86 articles.

1. Evaluating in situ biodegradation of 13C-labelled naphthenic acids in groundwater near oil sands tailings ponds

2. Distribution of Recent Photosynthates in Saplings of Two Hybrid Poplar Clones

3. A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations

4. Béasse, M. 2012. Microbial communities in organic substrates used for oil sands reclamation and their link to boreal seedling growth. M.Sc. thesis, Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada. 96 pp.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3