Author:
Folkes D. J.,Crooks J. H. A.
Abstract
Current methods of predicting the response of soft clays to surface loading are often unsuccessful because the assumed constitutive relationships, including effective stress path behaviour, are incorrect. In particular, the transition from small-strain to large-strain behaviour (i.e. yielding) is frequently not taken into account. Recent laboratory testing has demonstrated that the behaviour of soft clays is largely controlled by yielding. The locus of effective stress states causing yield is known as the yield envelope (YE).The effective stress paths (ESP's) in soft clay foundations below the centre of six fills were determined from computed total stresses and measured pore-water pressures. Yield behaviour is clearly indicated by ESP shapes. The yield envelopes inferred from analyses of field data are similar to those obtained from laboratory testing. Effective stress path shapes vary widely, depending on a variety of factors, including imposed stress level, rate of construction, and boundary drainage conditions. This finding contradicts an earlier conclusion that soft clay behaviour can be characterized by a single ESP. Because of the wide range of possible ESP shapes, the parameters [Formula: see text] does not provide an adequate basis for determining the effective stress state in a soft clay.The ESP/YE analyses indicate that yield can occur either during loading or during excess pore-water pressure dissipation following completion of loading. Yield of sensitive soils during loading is usually followed by strain softening. However, in some soils, dilatant behaviour appears to occur. Yield during dissipation of excess pore-water pressure is characterized by a dramatic change in cv and increased compressibility. Key words: soft clay, yield, effective stress paths, field behaviour, strain softening, rate of consolidation.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献