Prediction of Post-Yield Strain from Loading and Unloading Phases of Pressuremeter, Triaxial, and Consolidation Test Curves for Sustainable Embankment Design

Author:

Khan Ammad HassanORCID,Rehman Zia ur,Abbass Wasim,Masoud Zubair,Mohamed Abdeliazim MustafaORCID,Fathi Dina Mohamed,Aziz MubashirORCID,Abbas Safeer

Abstract

Exponential development of post-yield strain (Ԑpost) is a pivotal indicator of failure in embankments constructed on soft saturated clays. This paper characterizes saturated clay stratum comprising very soft to very stiff stratigraphy, with plasticity index (PI) ranging from 19% to 31%, by performing widely used geotechnical engineering tests, i.e., the prebored pressuremeter (PMT) test, the triaxial (TXL) test, and constant-rate-of-strain (CRS) consolidation. PMT, TXL, and CRS tests were performed at a strain rate range of 0.18%/min to 0.21%/min to explore the yield stress (σ′y), the pre-yield strain (Ԑpre), and the post-yield strain (Ԑpost). Results indicate that Ԑpost/Ԑpre for PMT, TXL, and CRS stress–strain curves range from 2.7 to 19 in the loading phase and 2 to 21 in the unloading phase. An exponential increase in Ԑpost/Ԑpre is observed in the range of 10 to 21 for very soft to soft clay which is congruent with the realistic sustainable range of 4 to 30 for embankment failure on soft clays worldwide. The evaluated Ԑpost/Ԑpre can be applied for sustainable prediction of post-failure evolution of strains in embankments on soft clays. Simplistic correlations are developed for approximation and prediction of Ԑpost as a function of σ′y, Ԑpre and maximum applied pressure (Pmax) for loading and unloading phases with reasonable accuracy. The intuitive zone of critical ℇpost is quantified for impending failure in embankments for maximum applied pressure (Pmax), ranging from 36 kPa to 100 kPa for very soft to soft clay for use in sustainable embankment design and construction. Variation in predicted versus measured results of an individual site is observed to be within ±10% of line of equality.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3