Extensive autolytic fragmentation of membranous versus cytosolic calpain following myocardial ischemia–reperfusion

Author:

Gilchrist James S.C.123,Cook Tom123,Abrenica Bernard123,Rashidkhani Babak123,Pierce Grant N.123

Affiliation:

1. Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada.

2. Department of Oral Biology, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada.

3. Department of Physiology, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada.

Abstract

We investigated calpain activation in the heart during ischemia–reperfusion (I–R) by immunologically mapping the fragmentation patterns of calpain and selected calpain substrates. Western blots showed the intact 78 kDa large subunit of membrane-associated calpain was autolytically fragmented to 56 and 43 kDa signature immunopeptides following I–R. Under these conditions, the 78 kDa calpain large subunit from crude cytosolic fractions was markedly less fragmented, with only weakly stained autolytic peptides detected at higher molecular weights (70 and 64 kDa). Western blots also showed corresponding calpain-like degradation products (150 and 145 kDa) of membrane-associated α-fodrin (240 kDa) following I–R, but in crude myofibrils α-fodrin degradation occurred in a manner uncharacteristic of calpain. For control hearts perfused in the absence of ischemia, autolytic fragmentation of calpain and calpain-like α-fodrin degradation were completely absent from most subcellular fractions. The exception was sarcolemma-enriched membranes, where significant calpain autolysis and calpain-like α-fodrin degradation were detected. In purified sarcoplasmic reticulum membranes, RyR2 and SERCA2 proteins were also highly degraded, but for RyR2 this did not occur in a manner characteristic of calpain. When I–R-treated hearts were perfused with peptidyl calpain inhibitors (ALLN or ALLM; 25 µmol/L), calpain autolysis and calpain-like degradation of α-fodrin were equally attenuated by each inhibitor. However, only ALLN protected against early loss of developed pressure in hearts following I–R, with no functionally protective effect of ALLM observed. Our studies suggest calpain is preferentially activated at membranes following I–R, possibly contributing to impaired ion channel function implicated by others in I–R injury.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3