Role of Calcium-Activated Neutral Protease (Calpain) in Cell Death in Cultured Neonatal Rat Cardiomyocytes During Metabolic Inhibition

Author:

Atsma Douwe E.1,Bastiaanse E.M. Lars1,Jerzewski Anastazia1,Van der Valk Lizet J.M.1,Van der Laarse Arnoud1

Affiliation:

1. From the Department of Cardiology, University Hospital, Leiden, Netherlands.

Abstract

Abstract Calcium-activated neutral protease (CANP), also known as calpain, has been implicated in the development of cell death in ischemic hearts. CANP is thought to be activated by the calcium overload that develops during ischemia. We studied the involvement of CANP in cell death in cultured neonatal rat cardiomyocytes during metabolic inhibition (5 mmol/L NaCN+10 mmol/L 2-deoxyglucose). First, we isolated CANP using ion exchange and affinity chromatography. Then the efficacy of the CANP inhibitors calpain I inhibitor, leupeptin, and E64 to inhibit isolated CANP activity was tested with the use of fluorescently labeled β-casein as a substrate. The IC 50 for the inhibitors was between 2.1 and 56 μmol/L. Uptake of the inhibitors by intact cells was assessed with the use of 99m Tc-radiolabeled inhibitors. The calculated intracellular inhibitor concentrations were sufficiently high to yield substantial inhibition of intracellular CANP activity. Intracellular CANP activity was measured directly with the use of the cell-permeant fluorogenic CANP-specific substrate N -succinyl-Leu-Leu-Val-Tyr-7-amido-4-methyl-coumarin. During metabolic inhibition, intracellular CANP activity was increased compared with control incubation. The time course of CANP activation was compatible with that of the rise in [Ca 2+ ] i , as measured by fura 2 and digital imaging fluorescence microscopy. Calpain I inhibitor and leupeptin inhibited intracellular CANP activity both during metabolic inhibition and control incubation, whereas E64 did not. Despite their substantial inhibition of intracellular CANP activity, calpain I inhibitor and leupeptin did not attenuate cell death during metabolic inhibition. We therefore conclude that intracellular CANP in cardiomyocytes is activated during metabolic inhibition, but it does not play a major role in the development of cell death.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3