Using blood pressure telemetry to assess acute changes in arterial stiffness in rats after nitric oxide synthase inhibition or environmental tobacco smoke exposure

Author:

Gentner Nicole J.12,Weber Lynn P.12

Affiliation:

1. Toxicology Graduate Program, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.

2. Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.

Abstract

Although environmental tobacco smoke (ETS) exposure has been reported to acutely increase arterial stiffness in humans, understanding of the underlying mechanisms is unclear and few studies have measured these effects in experimental animals. One potential mechanism for the increased arterial stiffness is reduced nitric oxide (NO) bioactivity as a result of oxidative stress. Thus, the objective of this study was to determine whether acute changes in arterial stiffness could be detected using arterial pulse wave dP/dt in blood pressure telemetry implanted rats and to investigate the role of NO in regulating dP/dt. Intravenous injection of acetylcholine (0.91 ng/kg) decreased and norepinephrine (0.02 mg/kg) increased dP/dt compared to saline vehicle (0.5 mL/kg). Injection of the NO synthase inhibitor, NG-nitro-l-arginine methyl ester (L-NAME; 30 mg/kg) decreased plasma nitrate/nitrite (NOx), but transiently increased dP/dt. ETS at low and high doses had no effect on dP/dt, but increased plasma NOx levels at high ETS exposure and increased plasma nitrotyrosine levels in both ETS groups. In conclusion, acute changes in NO production via acetylcholine or L-NAME alter the arterial pulse wave dP/dt consistently with the predicted changes in arterial stiffness. Although acute ETS appears to biologically inactivate NO, a concomitant increase in NO production at high ETS exposure may explain why dP/dt was not acutely altered by ETS in the current study.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3