Mechanisms of bone remodeling during weight-bearing exercise

Author:

Zernicke Ronald123,MacKay Christopher123,Lorincz Caeley123

Affiliation:

1. Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.

2. Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 1N4, Canada.

3. Faculty of Engineering, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 1N4, Canada.

Abstract

Exercise-induced mechanical loading can have potent effects on skeletal form and health. Both intrinsic and extrinsic factors contribute to bone structure and function. Mechanical simuli (e.g., strain magnitude, frequency, rate, and gradients, as well as fluid flow and shear stress) have potent influences on bone-cell cytoskeleton and associated signalling pathways. Although the immature skeleton may be more able to benefit from exercise, a skeletally mature population can also benefit from exercise programs aimed at increasing the functional loads to which the skeleton is exposed. The definitive explanation of mechanical-loading and (or) bone-cell mechanotransductive phenomena, however, remains elusive. Here, we briefly review the structural and anatomical foundation for bone adaptation, focusing on mechanical loading effects on bone, linked to the roles of integrins, cytoskeleton, membrane channels, and auto- and paracrine factors in bone modeling and remodeling.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3