Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts

Author:

Chen Neal X.1,Ryder Kimberly D.2,Pavalko Fredrick M.2,Turner Charles H.3,Burr David B.13,Qiu Jinya3,Duncan Randall L.23

Affiliation:

1. Departments of Anatomy,

2. Physiology and Biophysics, and

3. Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202

Abstract

Osteoblasts subjected to fluid shear increase the expression of the early response gene, c- fos, and the inducible isoform of cyclooxygenase, COX-2, two proteins linked to the anabolic response of bone to mechanical stimulation, in vivo. These increases in gene expression are dependent on shear-induced actin stress fiber formation. Here, we demonstrate that MC3T3-E1 osteoblast-like cells respond to shear with a rapid increase in intracellular Ca2+ concentration ([Ca2+]i) that we postulate is important to subsequent cellular responses to shear. To test this hypothesis, MC3T3-E1 cells were grown on glass slides coated with fibronectin and subjected to laminar fluid flow (12 dyn/cm2). Before application of shear, cells were treated with two Ca2+ channel inhibitors or various blockers of intracellular Ca2+ release for 0.5–1 h. Although gadolinium, a mechanosensitive channel blocker, significantly reduced the [Ca2+]i response, neither gadolinium nor nifedipine, an L-type channel Ca2+ channel blocker, were able to block shear-induced stress fiber formation and increase in c-fos and COX-2 in MC3T3-E1 cells. However, 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM, an intracellular Ca2+ chelator, or thapsigargin, which empties intracellular Ca2+ stores, completely inhibited stress fiber formation and c-fos/COX-2 production in sheared osteoblasts. Neomycin or U-73122 inhibition of phospholipase C, which mediates d- myo-inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ release, also completely suppressed actin reorganization and c-fos/COX-2 production. Pretreatment of MC3T3-E1 cells with U-73343, the inactive isoform of U-73122, did not inhibit these shear-induced responses. These results suggest that IP3-mediated intracellular Ca2+release is required for modulating flow-induced responses in MC3T3-E1 cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 250 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanobiology of osteocytes;Bone Cell Biomechanics, Mechanobiology and Bone Diseases;2024

2. Mechanobiology regulation;Multiscale Cell-Biomaterials Interplay in Musculoskeletal Tissue Engineering and Regenerative Medicine;2024

3. Ultrasound‐derived mechanical stimulation of cell‐laden collagen hydrogels for bone repair;Journal of Biomedical Materials Research Part A;2023-02-02

4. Changes in the intra- and extra-mechanical environment of the nucleus in Saos-2 osteoblastic cells during bone differentiation process: Nuclear shrinkage and stiffening in cell differentiation;Journal of the Mechanical Behavior of Biomedical Materials;2023-02

5. Functional Expression of Mechanosensitive Piezo1/TRPV4 Channels in Mouse Osteoblasts;The Bulletin of Tokyo Dental College;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3