Protective efficacy of aMycoplasma pneumoniaeP1C DNA vaccine fused with the B subunit ofEscherichia coliheat-labile enterotoxin

Author:

Zhu Cuiming12,Wang Shiping2,Hu Shihai1,Yu Minjun1,Zeng Yanhua1,You Xiaoxing1,Xiao Jinhong1,Wu Yimou1

Affiliation:

1. Department of Microbiology and Immunology, Pathogenic Biology Institute, University of South China, Hengyang 421001, China.

2. Xiangya School of Medicine, Central South University, Changsha 410078, China.

Abstract

In the present study, we investigated the immunomodulatory responses of a DNA vaccine constructed by fusing Mycoplasma pneumoniae P1 protein carboxy terminal region (P1C) with the Escherichia coli heat-labile toxin B subunit (LTB). BALB/c mice were immunized by intranasal inoculation with control DNAs, the P1C DNA vaccine or the LTB–P1C fusion DNA vaccine. Levels of the anti-M. pneumoniae antibodies and levels of interferon-γ and IL-4 in mice were increased significantly upon inoculation of the LTB–P1C fusion DNA vaccine when compared with the inoculation with P1C DNA vaccine. The LTB–P1C fusion DNA vaccine efficiently enhanced the M. pneumoniae-specific IgA and IgG levels. The IgG2a/IgG1 ratio was significantly higher in bronchoalveolar lavages fluid and sera from mice fusion with LTB and P1C than mice receiving P1C alone. When the mice were challenged intranasally with 107CFU M. pneumoniae strain (M129), the LTB–P1C fusion DNA vaccine conferred significantly better protection than P1C DNA vaccine (P < 0.05), as suggested by the results, such as less inflammation, lower histopathological score values, lower detectable number of M. pneumoniae strain, and lower mortality of challenging from 5 × 108CFU M. pneumoniae. These results indicated that the LTB–P1C fusion DNA vaccine efficiently improved protective efficacy against M. pneumoniae infection and effectively attenuated development of M. pneumoniae in mice.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3