Experimental study of one-dimensional compression creep in crushed dry coral sand

Author:

Wang Jiabo1,Fan Pengxian12,Wang Mingyang1,Dong Lu1,Ma Linjian1,Gao Lei2

Affiliation:

1. State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, Army Engineering University, Nanjing, Jiangsu 210007, China.

2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China.

Abstract

Understanding the time-dependent deformation behaviour of backfill coral sand is important to the long-term stability of engineering facilities built on reefs and reclaimed land. A series of one-dimensional compression tests (with no lateral strain) were carried out on crushed coral sand with a variety of grading and relative densities (50%, 70%, and 90%) sampled from the South China Sea. Axial pressure was applied in stepped loading form: 100, 200, 400, 800, and 1600 kPa. Each level loading was applied for 3 days and then completely unloaded until the deformation was stable, after which the next loading level was applied. The test results indicate: (i) the deformation of coral sand is much larger than silica sand and involves a larger proportion of time-dependent and plastic deformation; (ii) the total deformation of coral sand and proportion of irreversible deformation decreases as the relative density increases; (iii) coral sands of better grading tend to deform less in total and have larger proportions of elastic and time-dependent deformation; and (iv) the grading of coral sand changes during the deformation process due to particle breakage. Based on the test results, the relationships between particle breakage and pressure, relative density, and grading, as well as the grain-scale mechanism of the deformation, are discussed.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3