Activity of in situ stellate ganglion neurons of dogs recorded extracellularly

Author:

Armour J. A.

Abstract

Activity was recorded from 145 neurons in the in situ stellate ganglia of 36 dogs. The activity of 28 of these neurons, most of them located in the ganglia's cranial medial region, was related to the cardiac cycle primarily during systole. The activity of 16 of these cardiovascular-related neurons was modified by gentle mechanical distortion of the superior vena cava (1), heart (4), or thoracic aorta (11). Forty-one of the neurons were modified by respiration, with 17 being phase-locked to the respiratory cycle. Other neurons were activated by gentle mechanical distortion of localized regions of the thoracic wall (21% of all neurons), neck (18%), skin of the left foreleg (10%), or the mediastinum adjacent to the stellate ganglion (3%). Acutely decentralizing the stellate ganglion abolished the spontaneous activity of some, but not all, of these neurons including the respiratory or cardiovascular-related neurons. In the intact or acutely decentralized stellate ganglion, few neurons were activated by single short duration (1 – 4 ms) stimuli delivered to nerves attached directly or indirectly to the ganglion; however, most were activated by brief high frequency stimuli delivered in trains of 20–200 ms, or by single stimuli lasting 20–200 ms. As most cardiovascular, respiratory, or neck-related neurons in the stellate ganglion were not activated by single brief stimuli delivered to the cardiopulmonary nerves or vagosympathetic trunks, presumably they did not project their axons into the neck or thoracic organs. Thus, they were considered to be interneurons. It is postulated that interneurons in stellate ganglia can be modified by afferent receptors located in tissues of the neck, lungs, heart, or great thoracic vessels, whether the ganglion is intact or acutely decentralized. In addition, neurons in the stellate ganglion can be modified by mechanoreceptors located in the thoracic wall, abdominal wall, foreleg, or adjacent mediastinum. The majority of these neurons are activated by trains of impulses rather than single short duration impulses.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3