Metrics of High Cofluctuation and Entropy to Describe Control of Cardiac Function in the Stellate Ganglion

Author:

Gurel Nil Z.ORCID,Sudarshan Koustubh B.,Hadaya Joseph,Karavos Alex,Temma Taro,Hori Yuichi,Armour J. Andrew,Kember Guy,Ajijola Olujimi A.

Abstract

AbstractNeural control of the heart involves dynamic adaptation of mechanical and electrical indices to meet blood flow demands. The control system receives centrally-derived inputs to coordinate cardiac function on a beat-by-beat basis, producing “functional” outputs such as the blood pressure waveform. Bilateral stellate ganglia (SG) are responsible for integration of multiple inputs and efferent cardiopulmonary sympathetic neurotransmission. In this work, we investigate network processing of cardiopulmonary transduction by SG neuronal populations in porcine with chronic pacing-induced heart failure and control subjects. We derive novel metrics to describe control of cardiac function by the SG during baseline and stressed states from in vivo extracellular microelectrode recordings. Network-level spatiotemporal dynamic signatures are found by quantifying state changes in coactive neuronal populations (i.e., cofluctuations). Differences in “neural specificity” of SG network activity to specific phases of the cardiac cycle are studied using entropy estimation. Fundamental differences in information processing and cardiac control are evident in chronic heart failure where the SG exhibits: i) short-lived, high amplitude cofluctuations in baseline states, ii) greater variation in neural specificity to cardiac cycles, iii) limited sympathetic reserve during stressed states, and iv) neural network activity and cardiac control linkage that depends on disease state and cofluctuation magnitude. These findings indicate that spatiotemporal dynamics of stellate ganglion neuronal populations are altered in heart failure, and lay the groundwork for understanding dysfunction neuronal signaling reflective of cardiac sympathoexcitation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3