The liquefaction of sands, a collapse surface approach

Author:

Sladen J. A.,D'Hollander R. D.,Krahn J.

Abstract

Recent large-scale slides occurring during the hydraulic placement of an artificial island berm in the Beaufort Sea resulted from the liquefaction of the berm sand. Subsequent laboratory tests and back analyses have led to advancements in the understanding of the liquefaction potential of sand. Analyses of undrained triaxial tests, undertaken to measure steady state parameters, suggest that there is a "collapse surface" in three-dimensional void ratio – shear stress – normal stress space. A necessary condition for liquefaction is that the soil state lie on this surface. This collapse surface concept is fundamentally an extension of the steady state concepts proposed by others, and in many respects follows the principles of critical state soil mechanics. Replotted published tests support the concept. Parameters used to describe the position of the surface are termed collapse parameters. These can be converted into parameters analogous to Mohr–Coulomb failure parameters and can therefore be used in conventional limit equilibrium stability analyses. Utilizing these parameters overcomes limitations inherent in previously proposed undrained steady state analysis methods. These concepts also provide a basis for a rational explanation of the Beaufort Sea hydraulic fill slides. Key words: liquefaction, sand, hydraulic fill, slope stability, steady state testing.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 446 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3