On the mechanical behaviour of a coral silt from the South China Sea

Author:

Yao Ting1,Cao Ziwei2,Li Wei2

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, P. R. China

2. Faculty of Engineering, China University of Geosciences, Wuhan, P. R. China

Abstract

During land reclamation on the reef islands, large amounts of silt-sized coral soils were created by segregation and degradation. The accumulation of silt-sized coral soils is fairy uncommon while the research on the geotechnical properties of the coral silt is very limited. In this study, a systematic experimental investigation on the mechanical behaviour of a coral silt obtained from a reclaimed reef island in the South China Sea has been performed, with comparisons to the coral sand collected from the same area. Similar to the coral sand, the coral silt particles also exhibit irregular particle shape and intra-particle pore due to their nature origin. According to the limiting water contents, the coral silt is classified as a low-plasticity clayey silt. Under one-dimensional compression, the coral silt exhibits a much quicker convergence compared to coral sand. Prior to convergence, the compressibility of coral silt is higher. After yielding, the compressibility of coral sand becomes higher due to significant particle breakage. The loose coral silt subjected to undrained shearing at low confining pressures exhibits obvious strain softening behaviour, indicating static liquefaction or flow failure. The peak and critical state friction angles of coral silt are lower than those of coral sand but much higher than those of the other terrigenous clayey silts. A curved critical state line with well-defined horizontal asymptote in the deviatoric stress – mean effective stress plane is identified for coral silt, again indicating higher potential to static liquefaction.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3