Complementary responses of stream fish and benthic macroinvertebrate assemblages to environmental drivers in a shale-gas development area

Author:

Lento Jennifer1,Gray Michelle A.2,Ferguson Allison J.1,Curry R. Allen3

Affiliation:

1. Canadian Rivers Institute and Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada

2. Canadian Rivers Institute and Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB E3B 5A3, Canada

3. Canadian Rivers Institute, Faculty of Forestry and Environmental Management and Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada

Abstract

Shale-gas production could impact freshwater quality through contamination of the physical and chemical habitat (e.g., fracturing fluids, untreated or treated effluent) or development-related impacts. Despite environmental concerns, information is lacking to support biomonitoring as a diagnostic tool to assess impacts of shale-gas production. We characterized water quality and biota in areas of high shale gas potential (Early Carboniferous bedrock in New Brunswick, Canada) and surrounding geologic areas, and we assessed patterns in benthic macroinvertebrate (BMI) and fish assemblages. Early Carboniferous stations differed primarily based on water chemistry, and BMI were associated with a gradient in conductivity and temperature across geologic classes. Concordance analysis indicated similar classification of stations by both organism groups, though fish were more related to turbidity and nutrients. Concordance among fish and BMI was strongest at high conductivity, Early Carboniferous stations. These results suggest that geology plays a strong role in driving abiotic habitats and biotic communities of streams, even at small spatial scales. Furthermore, they suggest BMI and fish can provide complementary information for biomonitoring in shale-gas development areas, with BMI responding to increased ion concentrations from surface water contamination, and fish responding to changes in nutrients and turbidity resulting from development.

Publisher

Canadian Science Publishing

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3