Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use

Author:

Allen Andrew P,Whittier Thomas R,Larsen David P,Kaufmann Philip R,O'Connor Raymond J,Hughes Robert M,Stemberger Richard S,Dixit Sushil S,Brinkhurst Ralph O,Herlihy Alan T,Paulsen Steven G

Abstract

We assessed environmental gradients and the extent to which they induced concordant patterns of taxonomic composition among benthic macroinvertebrate, riparian bird, sedimentary diatom, fish, and pelagic zooplankton assemblages in 186 northeastern U.S.A. lakes. Human population density showed a close correspondence to this region's dominant environmental gradient. This reflected the constraints imposed by climate and geomorphology on land use and, in turn, the effects of land use on the environment (e.g., increasing lake productivity). For the region as a whole, concordance was highest among assemblages whose taxa were relatively similar in body size. The larger-bodied assemblages (benthos, birds, fish) were correlated most strongly with factors of broader scale (climate, forest composition) than the diatoms and zooplankton (pH, lake depth). Assemblage concordance showed little or no relationship to body size when upland and lowland subregions were examined separately. This was presumably because differences in the scales at which each assemblage integrated the environment were obscured more locally. The larger-bodied assemblages showed stronger associations with land use than the diatoms and zooplankton. This occurred, in part, because they responded more strongly to broad-scale, nonanthropogenic factors that also affected land use. We argue, however, that the larger-bodied assemblages have also been more severely affected by human activities.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3