Raman studies of cyanate: Fermi resonance, hydration and hydrolysis to urea

Author:

Brooker Murray H.,Wen Nanping

Abstract

Raman spectra were measured for potassium cyanate in the solid phase and as aqueous solutions in H2O and D2O for freshly prepared and for aged solutions. The results indicated that the assignment of the Fermi doublet, ν1 and 2ν2, for solid potassium cyanate was reversed from the assignment for the aqueous solution. The Fermi doublet has an associated pair of hot bands at 1191 and 1315 cm−1 which originate from the 638 cm−1 ν2 state, 010. Assignment of the hot bands was confirmed by studies of solid potassium cyanate at liquid-N2 temperature, room temperature, and at 473 K. Raman spectra of aged aqueous potassium cyanate revealed that the cyanate ion hydrolyzed slowly and spontaneously at room temperature (even without added ammonium) to produce urea and a carbamate, carbonate equilibrium mixture in parallel reactions. Hydrolysis of cyanate in aqueous ammonium chloride solution resulted in almost total conversion of cyanate to urea. The reaction was not reversible under ambient conditions. Differences in peak frequencies and half-widths were observed for the cyanate dissolved in H2O compared to solutions in D2O. The results provide evidence for strong hydrogen bonding of cyanate to water and are consistent with greater structure in the D2O solution. Theoretical ab initio calculations indicated that the water molecules hydrogen bond well at both the oxygen and nitrogen atoms of cyanate although the hydrogen bond to nitrogen was found to be slightly stronger.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3