Abstract
A simple and absolute method for the calculation of the first coordination number for any pure, isotropic liquid element is presented. The liquid density and the position for the first peak of the radial distribution function, assumed to be the atomic diameter, are the only parameters required. The coordination number for liquid metals that exhibit a BCC (body-centred cube) solid structure averages 7.4 while the first coordination number for liquid metals with a FCC (face-centred cube) or CPH (close-packed hexagonal) solid structure averages 7.1. Those liquid elements that have less closed-packed solid structures have a first coordination number less than 7.0. The calculation also correctly predicts the first coordination number for liquid Se to be 2.4, consistent with its chain-like structure. The calculated values for the liquid element coordination numbers are consistent with the decrease in density of a few percent that occurs upon melting and appear to be related to the EngelBrewer valence of the solid, which suggests that the electron structure of the solid may be retained upon melting. The first coordination numbers for liquid Ge and Si were calculated to be 5.0 and 4.7, respectively, larger than the value of 4.0 for solid structures. The increase in coordination number upon melting accounts for the increase in density of Ge and Si that occurs upon melting.PACS No.: 61.20.Gy
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献