On the dynamically arrested states of equilibrium and non-equilibrium gels: a comprehensive Brownian dynamics study

Author:

Torres-Carbajal Alexis,Ramírez-González Pedro EORCID

Abstract

Abstract In this work a systematic study over a wide number of final thermodynamic states for two gel-forming liquids was performed. Such two kind of gel formers are distinguished by their specific interparticle interaction potential. We explored several thermodynamic states determining the thermodynamic, structural and dynamic properties of both liquids after a sudden temperature change. The thermodynamic analysis allows to identify that the liquid with short range attraction and long range repulsion lacks of a stable gas–liquid phase separation liquid, in contrast with the liquid with short range attractions. Thus, although for some thermodynamic states the structural behavior, measured by the static structure factor, is similar to and characteristic of the gel phase, for the short range attractive fluid the gel phase is a consequence of a spinodal decomposition process. In contrast, gelation in the short range attraction and long range repulsion liquid is not due to a phase separation. We also analyze the similarities and differences of the dynamic behavior of both systems through the analysis of the mean square displacement, the self part of the intermediate scattering function, the diffusion coefficient and the α relaxation time. Finally, using one of the main results of the non-equilibrium self-consistent generalized Langevin equation theory (NE-SCGLE), we determine the dynamic arrest phase diagram in the volume fraction and temperature (φ vs T) plane.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3