Cold tolerance varies among invasive populations of the Asian clam (Corbicula fluminea)

Author:

Cvetanovska E.12,Castañeda R.A.3,Hendry A.P.12,Conn D.B.4,Ricciardi A.1

Affiliation:

1. Redpath Museum, McGill University, 859 Sherbrooke Street West, Montréal, QC H3A 0C4, Canada.

2. Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, QC H3A 1B1, Canada.

3. Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.

4. Berry College, 2277 Martha Berry Hwy NW, Mt Berry, GA 30149, USA.

Abstract

The distribution of the subtropical Asian clam (Corbicula fluminea (O.F. Müller, 1774)), one of the world’s most invasive freshwater molluscs, is reportedly constrained by a lower thermal tolerance limit of 2 °C. Although its occurrence in north temperate regions is typically restricted to artificially heated waterbodies, the species has been found to overwinter in unheated lakes and rivers. In laboratory experiments, we compared the cold tolerance of populations from several geographically distinct sites spanning 35°N to 46°N in eastern North America. Each population contained individuals that fully recovered from 2 months of continuous exposure to near-freezing (1 °C) conditions, contrary to published accounts of C. fluminea’s thermal ecology. Survivorship increased with body size and was enhanced by prior acclimation to a low temperature (10 °C) compared with a higher one (18 °C). When acclimated to 10 °C, clams from northern populations exhibited greater survivorship (55.0% ± 16.1%) than those from southern populations (26.7% ± 19.2%). However, one southern population demonstrated survivorship as great as that of the most tolerant northern population, suggesting that its clams could overwinter in unheated northern waterbodies. Differences among populations indicate either that contemporary evolution has occurred or that developmental plasticity shapes future acclimation responses.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3