Author:
LaBaugh James W.,Rosenberry Donald O.,Winter Thomas C.
Abstract
Groundwater seepage was the largest annual flux of water into (58–76%) and out of (73–83%) Williams Lake during a 12-year study, during which the entire volume of the lake was replaced four times. The only other water fluxes to and from the lake, which has no surface-water inlet or outlet, were atmospheric precipitation and evaporation. Nearly all of the annual input of calcium, magnesium, sodium, potassium, chloride, sulfate, and silica was provided by groundwater. Although much of the calcium and most of the silica input was retained in the lake, this retention did not result in increased chemical mass in the lake water mass because biologically mediated removal of calcium and silica to the sediments equaled or exceeded loss by lake seepage to groundwater. Groundwater represented as much as one-half the annual hydrological input of phosphorus and nitrogen; the remainder was supplied by atmospheric precipitation. From about 70 to 90% of the annual input of phosphorus and nitrogen was retained in the lake. Although water and chemical fluxes varied from year to year, interaction of the lake with groundwater determined the hydrological and chemical characteristics of Williams Lake.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献