Landscape controls of surface-water/groundwater interactions on shallow outwash lakes: how the long-term groundwater signal overrides interannual variability due to evaporative effects

Author:

Hokanson K. J.ORCID,Rostron B. J.ORCID,Devito K. J.ORCID,Hopkinson C.ORCID,Mendoza C. A.ORCID

Abstract

AbstractThe spatial and temporal controls on variability of the relative contributions of groundwater within and between flow systems to shallow lakes in the low-relief glaciated Boreal Plains of Canada were evaluated. Eleven lakes located in a coarse glacial outwash, of varying topographic positions and potential groundwater contributing areas, were sampled annually for stable O and H isotope ratios over the course of 8 years. It was demonstrated that landscape position is the dominant control over relative groundwater contributions to these lakes and the spatial pattern of the long-term isotopic compositions attributed to groundwater overrides interannual variability due to evaporative effects. Lakes at low landscape positions with large potential groundwater capture areas have relatively higher and more consistent groundwater contributions and low interannual variability of isotopic composition. Isolated lakes high in the landscape experience high interannual variability as they have little to no groundwater input to buffer the volumetric or isotopic changes caused by evaporation and precipitation. An alternative explanation that lake morphometry (area and volume) control long-term isotopic compositions is tested and subsequently refuted. Landscape position within coarse outwash is a strong predictor for relative groundwater input; however, surface-water connections can short circuit groundwater pathways and confound the signal. A hydrogeological case study for three of the study lakes is used to contextualize and further demonstrate these results.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3