Exploring differentially expressed genes associated with coat color in goat skin using RNA-seq

Author:

Peng Yongdong1,Wang Yaqi1,Wang Ruining1,Geng Liying2,Ma Ruxue1,Zhang Chuansheng1,Liu Zhengzhu1,Gong Yuanfang1,Li Jingshi2,Li Xianglong1

Affiliation:

1. College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People’s Republic of China.

2. College of Animal Science and Technology, Agricultural University of Hebei Province, Baoding, Hebei 071001, People’s Republic of China.

Abstract

Fur color in domestic goats is an important, genetically determined characteristic that is associated with economic value. This study was designed to perform a comprehensive expression profiling of genes expressed in the skin tissues from Laiwu Black goat and Lubei White goat. Comparisons of black and white goat skin transcriptomes revealed 102 differentially expressed genes (DEGs), of which 38 were upregulated and 64 downregulated in black skin compared with white skin. Among the DEGs, we identified six genes involved in pigmentation, including agouti signaling protein (ASIP), CAMP responsive element binding protein 3-like 1 (CREB3L1), dopachrome tautomerase (DCT), premelanosome protein (PMEL), transient receptor potential cation channel subfamily M member 1 (TRPM1), and tyrosinase-related protein 1 (TYRP1). Notably, there were no significant differences in the expression of melanocortin 1 receptor, microphthalmia-associated transcription factor, tyrosinase, and KIT proto-oncogene receptor tyrosine kinase between the black and white skin samples, whereas ASIP expression was detected only in white skin. PMEL, TRPM1, TYRP1, and DCT showed higher expression in black goat skin, but ASIP and CREB3L1 had higher expression in white goat skin. Quantitative polymerase chain reaction results for PMEL, TRPM1, DCT, TYRP1, and CREB3L1 expression were consistent with those for RNA-seq. These results will expand our understanding of the complex molecular mechanisms of skin physiology and melanogenesis in goats, and provide a foundation for future studies.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3