Physiological processes in plantation establishment and the development of specifications for forest planting stock

Author:

Burdett A. N.

Abstract

Both the morphological and physiological characteristics of forest planting stock vary widely with nursery culture and environment. Through the control of environmentally determined variation in phenotype, stock can be adapted to both the stress of transplanting from nursery to forest site and the particular environmental conditions of the forest site. Evidence is discussed that indicates that the stress of transplanting is primarily water stress, resulting from (i) the confinement of roots to the planting hole, (ii) poor root–soil contact, and (iii) low root permeability. These deficiencies are overcome by root growth, which is thus a central process in plantation establishment. Root growth depends largely on current photosynthesis. Photosynthesis depends on the assimilation of carbon dioxide at the expense of lost water in transpiration. Transpiration is limited by water uptake and hence depends on root growth. Root growth and photosynthesis in newly planted trees are thus mutually dependent. Because of this relationship, plant water status immediately after planting, or as soon as conditions favorable to root growth occur, is a crucial factor in determining plantation establishment success. High plant tissue water status immediately after planting, or as soon as environmental conditions permit root growth, allows the onset of a positive cycle of root growth supported by photosynthesis and photosynthesis supported by root growth; whereas low tissue water potential immediately after planting can lead to the inhibition or root growth by a lack of photosynthesis and the inhibition of photosynthesis by a lack of root growth. Stock characteristics that enhance plant water status immediately after planting are reviewed and the scope for their control considered. Stock characteristics affecting adaptation to particular planting site conditions, or capable of affecting postestablishment plantation performance, are also discussed.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3