Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems

Author:

Flanagan P. W.,Cleve K. Van

Abstract

A variety of evergreen and deciduous forests in the taiga of interior Alaska were studied over a 5-year period to examine how the chemical quality of forest-floor organic matter affected its rate of decomposition and mineral cycling within and outside the tree vegetation. Litterbag and respiration studies were used to monitor decomposition. Natural forest-floor substrates and others altered by addition of N, P, and K fertilizer and glucose as a carbon source were studied in the laboratory and field for rates of weight loss and O2 consumption. Forest floors differing in C/N ratios, including those deficient in N, were used to measure substrate quality influences on seedling growth, nutrient content, and tannin content. Microbial (bacteria and fungi) biomass was measured across a range of forest types along with pH, base saturation total pool sizes of N and P, and annual mineralization of organic matter per square metre. Under identical moisture and temperature conditions average respiration rates in evergreen forest-floor L, F, and H substrates were 1.8, 2.8, and 2.0 times less than in the corresponding deciduous forest horizons, respectively. Birch L and F horizons had respiration rates 11.5 times higher than the corresponding black spruce layers. Weight losses in birch L, F, and H horizons were 6, 3, and 2 times higher, respectively, than in the corresponding black spruce substrates. Substrates had a quality-dependent decay rate which did not change when they were relocated within or between sites indicating that measured field climatic differences were not as influential on decay rates as substrate quality components. Fungal biomass was significantly correlated with the quantity of organic matter in all sites (n = 15, r = 0.62) but correlations were better for deciduous (n = 9, r = 0.89), and evergreen (n = 6, r = 0.82) forests separately. Strong correlations exist also between grams of organic matter decayed per square metre per year and fungal biomass (n = 13, r = 0.86), and fungal biomass and grams of N and P mineralized per square metre per year (n = 14, r = 0.95) and (n = 11, r = 0.94, respectively). Seedlings on mineral-deficient substrates produced more tannins than the controls, and seedlings on substrates with widening C/N ratios had successively less tissue with lower N content, and proportionally more roots. Nitrogen content of litter fall in increasingly nitrogen-poor forest floors was correspondingly lower. Nitrogen content of litter fall on N rich forest floors and N fertilized forest floors was proportionately higher. Nitrogen withdrawal in leaves at senescence was inversely correlated with grams N mineralized per square metre per year in forest floors. Fertilization did not influence microbial processes in the field, though lab studies indicated a negative influence of NH4, P, and K on microbial respiration. Glucose added in the laboratory and field markedly increased forest-floor microbial respiration. In vitro glucose-induced increases in respiration were not influenced by addition of ammonium nitrate and were significantly depressed by addition of P and K. In the field, fertilization had no effect on either glucose-induced respiration or microbial biomass.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3