Design optimization of floating breakwaters with an interdisciplinary fluid–solid structural problem

Author:

Elchahal Ghassan12,Lafon Pascal12,Younes Rafic12

Affiliation:

1. Institut Charles Delaunay (FRE CNRS 2848), University of Technology of Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes 10010, France.

2. Lebanese University, Rafic Harriri Campus, Beirut, Lebanon.

Abstract

The design optimization of floating breakwaters implicates solving an interdisciplinary problem consisting of three models. The first one arises from the interaction of linear waves with a moored floating breakwater with a leeward boundary that is composed of a vertical sidewall representing the quay wall in ports. The second covers the dynamical behaviour of the oscillating structure caused by the incoming waves. These two assemble the hydrodynamic performance of the floating breakwater; while the third concerns its structural mechanics subject to hydrostatic and hydrodynamic forces. The goal of the optimization problem is to design an optimal floating breakwater that can attenuate the waves to the minimum height inside the port and fulfill several constraints related to floating, stability, and structural resistance. The objective function and constraints are expressed in terms of geometrical parameters of the breakwater as mathematical expressions assembled in an optimization algorithm based on the sequential quadratic programming method (SQP). This yields to several optimal structures each corresponding to a specified wave period. Finally, an analysis is performed to determine an optimum structure for a wide range of frequencies.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3