Hybrid intelligent and numerical methods to estimate the transmission coefficients of rectangular floating breakwaters

Author:

Karami Hojat1,Saghi Hasan2

Affiliation:

1. a Department of Civil Engineering, Semnan University, Semnan, Iran

2. b Department of Civil Engineering, Hakim Sabzevri University, Sabzevar, Iran

Abstract

ABSTRACT Breakwaters are used to reduce incoming wave energy at harbors and shorelines. This paper presents a comparison of novel two-dimensional hybrid intelligent models for the idealization of the effects of waves on the performance of moored rectangular floating breakwaters (FBs). Fluid structure interactions (FSIs) were idealized by airy-type monochromatic regular waves generated in a numerical wave tank. The coupled Volume of Fluid-Fast Fictitious Domain (VOF-FFD) interpolation method was used to evaluate FB motions. Different forms of Least Squares Support Vector Machine Methods (LSSVMs) that utilized 183 data streams were used to model FB performance for different wave height-to-water depth ratios, dimensional aspect ratios, and specific length-to-water depth ratios. Of those, 80% were used to train the model and 20% to test it. Parametric studies have shown that during training a Least Squares Support Vector Machine Method-Bat Algorithm (LSSVM-BA) with R2 = 0.8725, MAE = 0.0276, and RMSE = 0.0488 presents the most appropriate model for the evaluation of FB performance. Notwithstanding this, during testing a Least Squares Support Vector Machine Method-Cuckoo Search (LSSVM-CS) Algorithm with corresponding values of 0.6841, 0.0519, and 0.0708 performs better.

Publisher

IWA Publishing

Reference54 articles.

1. Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine;International Journal of Climatology,2008

2. Predicting optimum parameters of a protective spur dike using soft computing methodologies–A comparative study;Computers & Fluids,2014

3. Wave breaking macro features on a submerged rubble mound breakwater;Journal of Hydro-Environment Research,2008

4. A new metaheuristic bat-inspired algorithm;Computer Knowledge. Technology,2010

5. Transmission coefficients of a floating rectangular breakwater with porous side plates;International Journal of Naval Architecture and Ocean Engineering,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3