Muscle cellular properties in the ice hockey player: a model for investigating overtraining?

Author:

Green Howard J.1,Batada Aziz1,Cole Bill1,Burnett Margaret E.1,Kollias Helen1,McKay Scott1,Roy Brian1,Schertzer Jonathan D.1,Smith Ian C.1,Tupling Susan1

Affiliation:

1. Department of Kinesiology, University of Waterloo, Waterloo, ON N2L3G1, Canada.

Abstract

In this study, we hypothesized that athletes involved in 5–6 months of sprint-type training would display higher levels of proteins and processes involved in muscle energy supply and utilization. Tissue was sampled from the vastus lateralis of 13 elite ice hockey players (peak oxygen consumption = 51.8 ± 1.3 mL·kg–1·min–1; mean ± standard error) at the end of a season (POST) and compared with samples from 8 controls (peak oxygen consumption = 45.5 ± 1.4 mL·kg–1·min–1) (CON). Compared with CON, higher activities were observed in POST (p < 0.05) only for succinic dehydrogenase (3.32 ± 0.16 mol·(mg protein)–1·min–1 vs. 4.10 ± 0.11 mol·(mg protein)–1·min–1) and hexokinase (0.73 ± 0.05 mol·(mg protein)–1·min–1 vs. 0.90 ± 0.05mol·(mg protein)–1·min–1) but not for phosphorylase, phosphofructokinase, and creatine phosphokinase. No differences were found in Na+,K+-ATPase concentration (βmax: 262 ± 36 pmol·(g wet weight)–1 vs. 275 ± 27 pmol·(g wet weight)–1) and the maximal activity of the sarcoplasmic reticulum Ca2+-ATPase (98.1 ± 6.1 µmol·(g protein)–1·min–1 vs. 102 ± 3.3 µmol·(g protein)–1·min–1). Cross-sectional area was lower (p < 0.05) in POST but only for the type IIA fibres (6312 ± 684 μm2 vs. 5512 ± 335 μm2), while the number of capillary counts per fibre and the capillary to fibre area ratio were generally higher (p < 0.05). These findings suggest that elite trained ice hockey players display elevations only in support of glucose-based aerobic metabolism that occur in the absence of alterations in excitation–contraction processes.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3