Future emissions from Canadian boreal forest fires

Author:

Amiro B.D.12,Cantin A.12,Flannigan M.D.12,de Groot W.J.12

Affiliation:

1. Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

2. Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON P6A 2E5, Canada.

Abstract

New estimates of greenhouse gas emissions from Canadian forest fires were calculated based on a revised model for fuel consumption, using both the fire fuel load and the Drought Code of the Canadian Forest Fire Weather Index System. This model was applied to future climate scenarios of 2×CO2 and 3×CO2 environments using the Canadian Global Climate Model. Total forest floor fuel consumption for six boreal ecozones was estimated at 60, 80, and 117 Tg dry biomass for the 1×CO2, 2×CO2, and 3×CO2 scenarios, respectively. These ecozones cover the boreal and taiga regions and account for about 86% of the total fire consumption for Canada. Almost all of the increase in fuel consumption for future climates is caused by an increase in the area burned. The effect of more severe fuel consumption density (kilograms of fuel consumed per square metre) is relatively small, ranging from 0% to 18%, depending on the ecozone. The emissions of greenhouse gases from all Canadian fires are estimated to increase from about 162 Tg·year–1 of CO2 equivalent in the 1×CO2 scenario to 313 Tg·year–1 of CO2 equivalent in the 3×CO2 scenario, including contributions from CO2, CH4, and N2O.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3