Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp. from the coast of Fujian, China

Author:

Su Pei1,Wang De-Xiang1,Ding Shao-Xiong1,Zhao Jing1

Affiliation:

1. College of Ocean and Earth Science of Xiamen University, Xiangan District, Building Zhou Long Quan, B2-213, Xiamen 361005, People’s Republic of China.

Abstract

The marine sponge Mycale sp., a potential source of natural bioactive products, is widely distributed along the coast of Fujian, China. The cultivable bacterial community associated with Mycale sp., the antibacterial activities, and the PKS (polyketide synthase) and NRPS (nonribosomal peptide synthetase) gene diversity of these bacteria were investigated. Phylogenetic analysis of the 16S rRNA gene showed that the 51 isolates from Mycale sp. belonged to Actinobacteria, Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, and Firmicutes. Among them, some bacteria were first isolated from marine sponge. The 20 isolates with antimicrobial activities were primarily clustered within the groups Actinobacteria, Gammaproteobacteria, and Bacillus. Strain HNS054, which showed 99% similarity to Streptomyces labedae, exhibited the strongest antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus MTCC 1430, Bacillus subtilis MTCC 441) and Vibrio species. The screening of natural product biosynthetic genes revealed that 8 Actinobacteria species with antimicrobial activities possessed PKS-KS (ketosynthase) or NRPS-A domains, and the Nocardiopsis species contained a hybrid or mixed PKS–NRPS system. The phylogenetic analysis of the amino acid sequences indicated that the identified KS domains clustered with those from diverse bacterial groups, including Actinobacteria, Alphaproteobacteria, Cyanobacteria, and Firmicutes. Most KS domain sequences had high homology (>80%) to type I KSs, but the KS domain of Nocardiopsis sp. strain HNS048 had 77% similarity to the type II KS domain of Burkholderia gladioli. The NRPS-A domains of the 8 isolates were grouped into the Gammaproteobacteria, Actinobacteria, and Firmicutes groups. The NRPS-A gene of strain HNS052, identified as Nocardiopsis cyriacigeorgica, showed only 54% similarity to Rhodococcus opacus. All results suggested that Mycale sp. harboured diverse bacteria that could contribute to the production of novel bioactive substances in the future.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3