Affiliation:
1. Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
Abstract
Here, we comprehensively analysed the abundance, diversity, and activity of Tc1/mariner transposons in African coelacanth (Latimeria chalumnae). Fifteen Tc1/mariner autonomous transposons were identified and grouped into six clades: DD34E/Tc1, DD34D/mariner, DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32–36D/Tigger, belonging to three known families: DD34E/Tc1, DD34D/mariner, and DD×D/pogo (DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger). Thirty-one miniature inverted-repeat transposable element (MITE) transposons of Tc1/mariner were also identified, and 20 of them display similarity to the identified autonomous transposons. The structural organization of these full Tc1/mariner elements includes a transposase gene flanked by terminal inverted repeats (TIRs) with TA dinucleotides. The transposases contain N-terminal DNA binding domain and a C-terminal catalytic domain characterized by the presence of a conservative D(Asp)DE(Glu)/D triad that is essential for transposase activity. The Tc1/mariner superfamily in coelacanth exhibited very low genome coverage (0.3%), but it experienced an extraordinary difference of proliferation dynamics among the six clades identified; moreover, most of them exhibited a very recent and current proliferation, suggesting that some copies of these transposons are putatively active. Additionally, at least four functional genes derived from Tc1/mariner transposons were found. We provide an up-to-date overview of Tc1/mariner in coelacanth, which may be helpful in determining genome and gene evolution in this living fossil.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献