Author:
Manoogian A.,Woolley J. C.
Abstract
It is shown that the equation ΔE = αT2/(T + β), which is commonly used to describe the temperature variation of energy gaps in semiconductors, is a second order approximation of the electron–phonon interaction term in the recently proposed equation ΔE = UTs + Vθ[coth (θ/2T) – 1]. The calculation shows that the parameters α and β of the approximate equation can describe the characteristics of semiconductors only if the relation [Formula: see text] holds, with the validity limited by the magnitude of the existing dilation effect. In this case it is found that β = θ/2 where θ is the effective Einstein vibrational frequency, in temperature units, of the phonon spectrum in the material. A comparison of the two equations when fitted to experimental data is presented and discussed.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
177 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献