Flow and heat transfer over a moving surface with nonlinear velocity and variable thickness in a nanofluid in the presence of thermal radiation

Author:

Elbashbeshy E.M.A.1,Emam T.G.1,Abdel-wahed M.S.2

Affiliation:

1. Mathematics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

2. Engineering Mathematics and Physics Department, Faculty of Engineering, Modern University MTI, Cairo, Egypt.

Abstract

We investigate the flow and heat transfer in nanofluids over a continuous variable thickness surface subjected to nonlinear velocity and thermal radiation. Three types of nanofluids, namely Cu, Ag, and Al2O3 were studied. A similarity transformation was used to obtain a system of nonlinear ordinary differential equations, which was solved numerically for general conditions. Numerical results were obtained for the skin friction, Nusselt number as well as for the velocity and temperature for selected values of the governing parameters, such as nanoparticle volume friction, surface thickness parameter, velocity power index parameter, and radiation parameter. A comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3