Interactive design and synthesis of a novel antibacterial agent

Author:

Wolfe Saul,Jin Haolun,Yang Kiyull,Kim Chan-Kyung,McEachern Ernest

Abstract

β-Lactam compounds act on penicillin-recognizing enzymes via acylation of the hydroxyl group of an active site serine. When the resulting acyl enzyme is kinetically stable, as in the case of a penicillin-binding protein (PBP), the biosynthesis of a bacterial cell wall is inhibited, and death of the organism results. The de novo design of an antibacterial agent targeted to a PBP might be possible if the three-dimensional structural requirements of the equilibrium (i.e, fit) and catalytic (i.e. reactivity) steps of the aforementioned enzymatic process could be determined. For a model of the active site of a PBP from Streptomyces R61, the use of molecular mechanics calculations to treat "fit," and ab initio molecular orbital calculations to treat "reactivity," leads to the idea that the carboxyl group (G1) and the amide N-H (G2) of the antibiotic are hydrogen bonded to a lysine amino group and a valine carbonyl group in the enzyme–substrate complex. These two hydrogen bonds place the serine hydroxyl group on the convex face of the antibiotic, in position for attack on the β-lactam ring by a neutral reaction, catalyzed by water, that involves a direct proton transfer to the β-lactam nitrogen. Molecular orbital calculations of structure–reactivity relations associated with this mechanism suggest that C=N is bioisosteric to the β-lactam N-C(=O), comparable to a β-lactam in its reactivity with an alcohol, and that the product RO(C-N)H is formed essentially irreversibly (−ΔE > 10 kcal/mol). Accordingly, structures containing a G1 and a G2 separated by a C=N, and positioned in different ways with respect to this functional group, have been synthesized computationally and examined for their ability to fit to the PBP model. This strategy identified a 2H-5,6-dihydro-1,4-thiazine substituted by hydroxyl and carboxyl groups as a target for chemical synthesis. However, exploratory experiments suggested that the C=N of this compound equilibrates with endocyclic and exocyclic enamine tautomers. This required that the C2 position be substituted, and that the hydroxyl group not be attached to the carbon atom adjacent to the C=N. These conditions are met in a 2,2-dimethyl-3-(2-hydroxypropyl)-1,4-thiazine, which also exhibits the necessary fit to the PBP model. Two epimers of this compound have been synthesized, from D- and L-serine. The compound derived from L-serine is not active. The compound derived from D-serine exhibits antibacterial activity, but is unstable, and binding studies with PBP's have not been performed. It is hoped that these studies can be carried out if modification of the lead structure leads to compounds with improved chemical stability.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3