Affiliation:
1. Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1W5, Canada.
2. Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
Abstract
Observations of the physical behaviour (motions) of the valence (frontier) electrons in the iconic benchmark hydride molecules CH4, NH3, and H2O are used to provide a direct experimental evaluation of hybridization and of the localized and delocalized orbital models of molecular electronic structure, after more than 80 years since the initial proposals of these theoretical concepts. Our previously published experimental measurements of valence (frontier) electron momentum probability distributions, made by electron momentum spectroscopy (EMS), are compared with those calculated using the localized molecular orbital (LMO) model and a range of hybrid orbital models, as well as with the delocalized canonical molecular orbital (CMO) and density functional theory Kohn–Sham orbital (KSO) models. In all cases, the electron momentum probability distributions calculated with LMOs and localized hybrid orbital type models are inconsistent with the experimental observations. In contrast, those calculated with the delocalized CMOs and KSOs are in very good agreement with the experimental measurements. These findings are of importance in those research applications such as reactivity, drug and novel material design, and also in molecular electronics, where the shapes and orientations of particular valence (frontier) orbital electron density probability distributions (and not the total electron densities) are considered to be key determining factors. These findings and their implications are also of pedagogical significance in chemistry and molecular physics.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献